Inspired by Paul Groves

1. $\mathrm{aA}+\mathrm{bB}+\ldots \rightleftharpoons \mathrm{rR}+\mathrm{sS}+\ldots$

Law of Mass Action:
$K_{c}=\frac{[R]^{\mathrm{r}}[\mathrm{S}]^{\mathrm{s}} \cdots}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}} \cdots}$
and for gases:

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{R}}\right)^{r}\left(\mathrm{P}_{\mathrm{S}}\right)^{s}}{\left(\mathrm{P}_{\mathrm{A}}\right)^{\mathrm{a}}\left(\mathrm{P}_{\mathrm{B}}\right)^{\mathrm{b}}}
$$

2. $K>1$ Products Favored
$\mathrm{K}<1$ Reactant Favored
3. Excluded: solids, liquids including water in aqueous solutions.
Why: because their []'s don't change
4. Convert Kc to Kp
$K p=K c(R T)^{\Delta n}$
Where $\Delta \mathrm{n}=$
mol of (g) products - mol of (g) reactants
5. Typical question: Given K_{C} and the starting concentrations of reactants, find concentrations of products at equilibrium.

Example: K_{C} for acetic acid $=1.8 \times 10^{-5}$.
What is the equilibrium concentration of $\left[\mathrm{H}^{+}\right]$ in a 0.100 M solution of the acid?
6. Relationship between modifying a chemical equation and the value of K

- Reverse a rxn = $1 / K_{\text {forward }}$
- Multiplying by a number " n " $=K^{n}$
- Adding rxns $=\mathrm{K}_{\text {overall }}=\mathrm{K}_{1} \times \mathrm{K}_{2} \times \ldots$

7. Le Chatelier's Principle: effect of changes in concentration, pressure and temperature. Equilibrium always "shifts" away from what you add and towards what you remove. "Stress" means too much or too little: chemical, heat, or volume.

[^0]8. If NOT at equilibrium (or you don't know if at equilibrium or not): Calculate Q, the reaction quotient.

- Set up the same way as if calculating K
- If $K<Q$
- Numerator too large Denominator too small
- Too many products Not enough reactants
- Reverse rxn is favored to reach equilib.
- "Shift left"
- If $K>Q$
- Numerator too small Denominator too large
- Not enough products Too many reactants
- Forward rxn is favored to reach equilib.
- "Shift right."

9. ICE Box

Example: $A \rightleftharpoons 2 B+C$

	A	B	C
initial	5.0 M	0 M	0 M
change	-x	+2 x	+x
equilibrium	$5.0-\mathrm{x}$	2 x	x

"C" row follows the stoichiometry of the rxn
10. The 5% rule allows us to approximate

- K must be < 1
- Usually able to be used if K is at least

1000 times smaller than []initial

- x must be $\leq 5 \%$ of the []initial
- If 5% rule doesn't work then use quadratic equation (not often seen on AP Exam)

$$
x=\begin{array}{r}
a x^{2}+b x+c=0 \\
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array}
$$

11. "Perfect Squares" are another way math is sometimes simplified.
$3 \times 10^{-6}=(x)(x) / 0.1 \quad$ take $\sqrt{ }$ of both sides and you get $1.73 \times 10^{-3}=x / 0.316$ now solving for x is super easy.

[^0]: Based on a handout by William Bond, Snohomish HS
 Good for solving quadratic, cubic, etc for ICE Tables if no graphing calculator https://www.mathpapa.com/equation-solver/

