Equilibrium: A Dynamic Process

Inspired by Paul Groves

A BLUFFER'S GUIDE

1. aA +bB + . . . ⇌ rR +sS + . . . Law of Mass Action:

$$K_c = \frac{[R]^r[S]^s \cdots}{[A]^a[B]^b \cdots}$$

and for gases:

$$K_p = \frac{(P_R)^r (P_S)^s}{(P_A)^a (P_B)^b}$$

- 2. K > 1 Products Favored K < 1 Reactant Favored
- Excluded: solids, liquids including water in aqueous solutions.
 Why: because their []'s don't change
- Convert Kc to Kp
 Kp = Kc(RT)^{Δn}
 Where Δn =
 mol of (g) products mol of (g) reactants
- **5.** Typical question: Given K_C and the starting concentrations of reactants, find concentrations of products at equilibrium.

Example: K_C for acetic acid = 1.8 x 10⁻⁵. What is the equilibrium concentration of [H⁺] in a 0.100 M solution of the acid?

- **6.** Relationship between modifying a chemical equation and the value of K
 - Reverse a rxn = 1/K_{forward}
 - Multiplying by a number "n" = Kⁿ
 - Adding rxns = $K_{overall} = K_1 \times K_2 \times ...$
- 7. Le Chatelier's Principle: effect of changes in concentration, pressure and temperature. Equilibrium always "shifts" away from what you add and towards what you remove. "Stress" means too much or too little: chemical, heat, or volume.

8. If NOT at equilibrium (or you don't know if at equilibrium or not): Calculate Q, the reaction quotient.

- Set up the same way as if calculating K
- If K < Q
 - Numerator too large Denominator too small
 - Too many products
 Not enough reactants
 - Reverse rxn is favored to reach equilib.
 - "Shift left"
- If K > Q
 - Numerator too small Denominator too large
 - Not enough products
 Too many reactants
 - Forward rxn is favored to reach equilib.
 - "Shift right."

9. ICE Box

Example: $A \rightleftharpoons 2B + C$

	Α	В	С
initial	5.0 M	0 M	0 M
change	-X	+2x	+X
equilibrium	5.0-x	2x	Х

"C" row follows the stoichiometry of the rxn

- **10.** The 5% rule allows us to approximate
 - K must be < 1
 - Usually able to be used if K is at least 1000 times smaller than []initial
 - x must be \leq 5% of the []initial
 - If 5% rule doesn't work then use quadratic equation (not often seen on AP Exam)

$$x = \frac{ax^2 + bx + c = 0}{-b \pm \sqrt{b^2 - 4ac}}$$

11. "Perfect Squares" are another way math is sometimes simplified.

 $3x10^{-6} = (x)(x) / 0.1$ take $\sqrt{ }$ of both sides and you get $1.73 \times 10^{-3} = x / 0.316$ now solving for x is super easy.